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We report on a possible crossover of a nonuniversal quantity at the upper critical dimensionality in the field
of percolation. Plotting recent estimates for site percolation thresholds of hypercubes in dimession 6
<13 against corresponding predictions from the Galam-Ma(@&f) formula p,=po[(d—1)(q-1)]2d® for
percolation thresholds, a significant departurepgfis observed ford=6. This result is reminiscent of the
crossover undergone by universal quantities in critical phenomena. For bond percolation, evidence of such a
crossover of dimensionality would require an improvement of the GM formula to reach a relative error of
typically 0.2%, while it is currently at 0.9% for hypercubes.
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I. INTRODUCTION In this work, we report on a possible crossover of a non-
universal quantity at the upper critical dimensionality in the

The discovery of renormalization group techniques byfield of percolation. Using the GM laws and a series of recent
Wilson in the early 1970s has allowed the powerful elucida-numerical estimates for hypercube percolation thresholds
tion of the mystery of critical phenomeia]. It is based on (6=d=13), site percolation thresholds are found to undergo
the existence of relevant variables, irrelevant variables, and drastic change of behavior at the percolation upper critical
universality classes. Accordingly all parameters are classifiedimensiond.=6. This result is reminiscent of the crossover
as universal quantities and nonuniversal quantities. For corundergone by universal quantities in critical phenomena. At
tinuous phase transitions the critical exponents are universabntrast, nothing similar is evidenced at any dimension for
while critical temperatures are not. the bond percolation.

In this framework dimension plays a key role in catego- Considering only the cas#™> 2 of interest in the present
rizing the effects of fluctuations. At very low dimensions, work, the GM laws are split in two. One applies te<8
fluctuations are too strong and prevent any long-range orde€ d; and can be written
from occurring. The limit from which it does not happen is
called the lower critical dimensiod,. Only for d>d, can pe=pol(d-1)(g- D], 3<d=<d. 1)
long-range order sustain fluctuations. On the other extreme,
there exists some dimensial called the upper critical di- The site percolatiom? is approximated by Eq(1), with b
menspndc, beyond Whlph quctuathns are averaged o'ut and-q, Po=1.2868, anch=0.6160. As for the bond percolation
do not influence the critical properties. Fibr d.. there exists threshold, py=0.7541 andb=a=0.9346. This law corre-
only one class of universality: the mean-field one. Thereforesponds to the so-called second clés® first one being re-
itis in the ranged, <d<d_ that fluctuations are instrumental |ated tod=2 only) and will be called for this reason the GM2
in determining the critical properties. law. Equation(1) cannot extend up td— . Among several

In parallel, percolation is a geometric phenomena with NGeasons outlined ifi6], one comes from the fact that, in this
temperature. However, it was shown to be indeed identical t@mjt, the percolation threshold should reduce to that of the

usual critical phenomena witd.=6. Therefore its critical cayley tree for both sites and bonds. In other words, one
exponents are universal quantities while percolation threshyyst recover the Bethe asymptotic limit

olds p; are not. Accordingly the value qf, must be calcu-

lated for each system and varies from one geometry to an- s_ B
other. However, at odds with this universality principle, a lot Pe=Pe
of efforts have been devoted to the finding of formulas for _ L .
the percolation threshold for about half a century. Severafduation(2) is violated by the GM2 law. This drawback of
formulas have been proposed, which involve only two pain€ GM2 law was the main motivation for introducing an-
rameters: the dimensichand coordination numbeg [2—7]. of[her Ia_w associated with a third class, which apphe; at hlg_h
The limits of such a choice have been discussed by Wierndfimension and has the proper Bethe asymptotic limit. This is
and Naoret al. [8,9], who also considered that the most € @symptotic GM3 law

accurate of such formulas are the Galam-Mau@) laws

=(@-17 d—e. (2

[6]. Indeed the high degree of accuracy of the GM law pre- pe=27(d- 1)(q- D] °d*>?, d>d, (3)
dictions hints at the existence of an underlying universality
principle for percolation thresholds. with a=0.088 00 for sites and=0.3685 for bonds.
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TABLE |. Numerical estimates for the percolation threshoﬂﬁ’mum), together with the results of the GM2 and GM3 laws. For sc
lattices atd=5 andd=6, the data of Refd.11,12 have been substituted by those of R&], since they are more accurate.

Lattice pa(GM2) po(GM3) p(num) p2(GM2) p2(GM3) pE(num)
Kagomé 0.65400 0.59264 0.65270 0.51620 0.38885 0.52440
Diamond 0.42675 0.43824 0.43000 0.39454 0.24984 0.38800
sc(d=3) 0.31154 0.27957 0.31160 0.24476 0.20697 0.24880
bcc (d=3) 0.25322 0.20792 0.24600 0.17872 0.18284 0.18030
fcc (d=3) 0.19168 0.13969 0.19800 0.11714 0.15479 0.11900
sc(d=4) 0.19725 0.18109 0.19700 0.16009 0.14599 0.16010
fcc (d=4) 0.094794 0.063570 0.098000
sc(d=5) 0.14152 0.13352 0.14100 0.11917 0.11287 0.11820
fcc (d=5) 0.057352 0.036740 0.054000
sc (d=6) 0.10901 0.10562 0.10902 0.095092 0.092028 0.094202
sc(d=7) 0.087898 0.087319 0.088951 0.079233 0.077697 0.078675
sc(d=8) 0.073191 0.074401 0.075210 0.067991 0.067232 0.067708
sc(d=9) 0.062410 0.064802 0.065210 0.059602 0.059255 0.059496
sc(d=10) 0.054198 0.057390 0.057593 0.053097 0.052971 0.053093
sc(d=11) 0.047756 0.051497 0.051590 0.047904 0.047893 0.047795
sc(d=12) 0.042578 0.046699 0.046731 0.043659 0.043704 0.043724
sc(d=13) 0.038336 0.042718 0.042715 0.040124 0.040190 0.040188

Despite the fact that the GM2 law is not exact, its accu-case it is a straight line. This is illustrated in Fig. 1. We have
racy is sufficient to materialize the dimensional dependenceeported on the same plot the numerical resultq;)i)faken
of the percolation threshold for the bcc, fcc, and hypercubidrom [10-12. For comparison, we have also reported
lattices up tad=6. Due to the lack of data for the percolation (crossesthe values ofpf predicted by the asymptotic GM3
thresholds in larger dimension, however, it has not been podaw. Note according the GM3 lawd-1)(q—1) is not the
sible so far to explore the existence of a critical crossovepertinent variable, hence a randomlike distribution of the
dimensiond. above which the percolation threshold would crosses which cannot be connected to generate a curve. In-
follow a formula different from the GM2 lawapproximated  deed, since thgSs depend on botkl andg, only the crosses
by the GM3 law. Recent Monte Carlo estimates for site and coresponding to lattices with the same topology, defined by
b_ond_per_colatlon thresholds Wlth negligible standard deviasye relation linkingd and g, can be connected.
tions in simple hypercube lattices frods6 up tod=13[10] In practice, it means that the crosses corresponding to all
now _mahke this mves;lghgtlon pl?ssmlel.( . fth the hypercubegsc from d=3 up tod=13 do belong to a
e e e el cure,since e same etz hods e for o

Ihese lattices. The crosses corresponding to fcc lattices

of Egs. (1) and (3). For the site percolation threshold, the )
crosgover between the two Iawspis clearly evidenced at di§hOUId also belong to another curve, but the fcc percolation

mensiond,=6. For bond percolation thresholds, however, nothréshold for the site is known fat=3, 4, and 5 only, and
sizable deviations from the GM2 law as defined by 8gis threesdata points are not sufficient to materialize a curve. All
detected up to the highest dimensids13 investigated. thePc's up to thed=6 line up on the GM2 lawwithin the
Such a crossover for bonds, if it exists, cannot be detected!NCertainty limit above mentiongas stated in Re{6].

since the GM2 and GM3 laws do not depart significantly 1he new data for the sc lattices at higher dimensions,
from each other in the range<d< 13. however, give evidence of a deviation of thgs from the

linear GM law which increases witt, illustrated in Fig. 1.
Il. ANALYSIS An equivalent formulation is to note a negative curvature of
the “numerical” p3(d) curve for sc hypercube lattices dt

The numerical estimatepf and pcB of the percolation 4 )
thresholds for sites and bonds, respectively, are reported iri © 10 match the GM3 law. To quantify this effecté we have

Table 1, together with the results of the GM2 and GM3 Iaws.pk)ged in Figs. 2 the relative (_jifferencApflpfz[pC(num)

For simple cubic(sg lattices atd=5 andd=6, the data of ~PI(GM2)]/p(num) as a function ofd for the hypercubes
Refs.[11,17 have been substituted by those of Rif0],  (since data are available only for these lattices at high dimen-
since they are more accurate; we shall return to this poingions. pg(num) is the numerical percolation threshdlgio]
later on. and pf(GMZ) the prediction of the GM2 law.

_ . We have reported ifi6] that |ApS can reach 0.008 for
A. Site percolation some lattices ind<6. This measures the accuracy of the

As b=0 for site percolation, the GM2 law is best illus- GM2 law when applied tany Bravais lattice sc, bc, or fcc in
trated in a log-log plot ofp? versus(d-1)(q-1), in which ~ 3<d=6. However, regarding the simple cubic and hyper-
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cubes only, the accuracy is much better. In particular, in ouiThat is why we consider as significant a departure from the
prior work (see Table | in Ref[6]), |Apg| for sc lattices was  GM2 law with |ApS/pS=0.4% in Fig. 2.

within 5x 107 at all dimensionsl <7, except a=6 where This plot then provides evidence for a crossoved at6:

an outstanding deviatioh&pa:0.00Z was pointed out be- atd<=6, the GM2 law applies; ad> 6, this is no longer the
tween the numerical estimate 0.107 available at that time andase. The systematic quasilinear increaseApf/ps as a
0.109 predicted by the GM2 law. The new numerical calcufunction ofd which extrapolates to zero et=6 corroborates
lations[10] have corrected the estimatep:ﬁ‘atd=6, raising this value for the crossover dimension. Note tHais also

pS from 0.107 to 0.109 017, now in agreement with the pre-known to be the upper marginal dimension where critical
diction of the GM2 law. With the new estimates of Rglf0],  exponents for the percolation transition reach mean-field val-
which are=30 times more precise than the previous onesues. However, in phase transition theory, only universal
we find |ApSl/pS<0.4% in the whole range 8d<6 [6].  quantities are supposed to undergo a crossovek.aThis
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site percolation transition gives an outstanding examplédo all the hypercube&c) from d=3 up tod=13 do belong to

where a nonuniversal quantity Iilﬂfalso undergoes a cross- a single curve. As we can see in Fig. 2, this curve has a

over atd.. negative curvature and crosses the straight line correspond-
Instead of choosing the GM2 law as the reference, we caing to the GM3 Iaw.p?(num) as a function ofd then shifts

also choose the GM3 law and investigate how the the percdrom the GM2 law atd,=6, to approach the GM&w) as-

lation thresholds approach this asymptotic law. The GM3sumed to be its asymptote in the GM model.

law is best illustrated in the log-log plot ofdbf Versusx To illustrate this behavior, we have reported, in Fig. 4,

=2d?/[(d-1)(q-1)] in Fig. 3 since it reduces to a straight ApS/pS=[pg(num)-p(GM3)]/pg as a function ofd for hy-

line. For comparison, the data have been also reported, argkrcubes in high dimensions. From this figure, it can be seen

the crosses now correspond to the valuepgoas predicted that this asymptotic limit is indeed reached d&t13. It is

by the GM2 law. Asx is not the pertinent variable according then important to note that the crossoverdgt6 does not

to the GM2 law, once again, only the crosses correspondingiean an abrupt shift from the GM2 law to the GM3 law.
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Instead, it is a crossover to another law which is missing B. Bond percolation
here. More important, it indicates this lgag(num) as a func- Let us now investigate the situation for bonds. The GM2

tion of d is not embedded in the GM formula and accepts thdaw in this case is illustrated in a log-log plot f as a
GM3 law only as an asymptote in the larddimit, eventu-  function of (d-—1)(g—1)/d (Fig. 5. No deviation from the
ally reached(within the error barsat d=13. Actually, the GM2 law can be evidenced for any lattice up to the highest
systematic and increasing dewaﬂonpfffrom the GM3 law  dimensiond=13 investigated. To be more sgecmc we have
asd decreases frord=13 can be viewed as a pretransitional reported in Flg 6 the dlf'ferences\pC D with ApS
effect upon approaching the upper critical dimension fr0m=p (GM2)-p; B(num and Apc=p, (num) (GM3) Note

below, beyond the scope of the GM3 law. the sign inversion in the def|n|t|on czx‘fpc to have this quan-
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tity positive, which means that the numerical estimates are ilest numerical estimatethresholds of sc, bcc, and fcc lat-
between the estimates of the GM2 and GM3 laws. Clearlytices is so small that the GM laws have the operational power
the exact(numerica) results match the GM2 law at<6, as  to address the problem of the crossover dimensionality.
expected. The relative deviation of the GM2 law with respect On this basis, the present analysis of the percolation
to the numerical result atl<6 is in the rangeAp2/p?  thresholds for s¢hypercubeghints at the possible existence
<0.9%, so that we can take as significant a departure fromf a crossover at.=6 for the site percolation threshold,
the GM2 IawAp?/pchoe%. although it is a nonuniversal parameter. At higher dimen-

However, the relative deviation between numerical estisions,p: departs from the GM2 law to approach the GM3
mates and the GM2 law is smaller in all dimensionsd@  asymptotic law which is reached at=13. For bonds no
=<13. Actually, the relative deviation of the numerical esti- similar behavior at.=6 is detected.
mates does not exceed 0.4% in the whole rangad 13, Because of the relatiod=2q for hypercubes, study of
not only with respect to the GM2 law, but also with respecthypercubes alone does not allow us to distinguish between
to the GM3 law, so that no significant difference between thahe variablesd andq to know which one is pertinent for the
two laws can be detected. Therefore, in contrast with thgossible crossover. However, some indication can be ex-
situation met in the site percolation problem, the GM3 law istracted from the data in Fig. 1. Let us consider in particular
not accurate enough to detect a crossovet==4. the fcc lattice, which has a coordinangemuch larger than

To explain why it is not possible to distinguish betweenthe hypercube at the same dimension. For instage€4
the GM2 and GM3 laws in the rangesfd< 13, we note that and 40 for fcc lattices in dimensiorms=4 andd=5, respec-
the leading term in g—1 expansion of the GM2 law at large tively. Those are the coordination numbers of hypercubes in
gisin (g—1)"?2 For bondsh-2a=-0.94, very close to the dimensions 12 and 20, respectively. The fcc percolation
exponent —1 of the leading term in the GM3 law. For sitesthresholds atl=4,5have been reported in Fig. 1, along with
however,b—2a=-1.23, which is markedly different from the values predicted by the GM2 and GM3 laws. This figure
-1, so that a clear distinction between the GM2 and GM3shows unambiguously that these two fcc lattices do satisfy
laws can be made even at the scale of a short dimensidtie GM2 law and not the GM3 law, despite the fact that their
interval for sites, while this is impossible for bonds. coordinance numbers are those of the hypercubes in dimen-

To be more specific, we note that the deviation of both thesionsd=12 andd=14.
GM2 and GM3 laws with respect to the numerical results— It corroborates that the pertinent variable responsible for
i.e.,|p2(GM2) - p2(num)| and|pS(GM3)-pE(num)|—is only  the possible crossover behavior in the percolation thresholds
on the fourth digit in dimension> 7, which amounts to a IS indeed the dimensiod, while the coordinatiom does not
relative error within 0.4%, while, as we have stated above, #/ay any significant role. It also justifies the term crossover
deviation with respect to the GM laws can be regarded a8f dimensionality used in this work. For universal variables,

significant only if it exceeds 0.9% for bonds. Therefore, evi-SUch as the critical exponents, the renormalization group
dence of a crossover of dimensionality =6 for bonds technique provides us with an elaborate theory to understand

requires an improvement of the GM law and its substitutionthe crossover of dimensionality at the associated identifica-

by a new formula which would improve the accuracy typi- tion of universality classes. However, such a behavior is not
cally a factor 3 expected for nonuniversal quantities like percolation thresh-

olds. The explanation for this unexpected result is thus a new
challenge in the field of phase transition theory.
We note thatd. is the upper critical limit for percolation
IIl. DISCUSSION transition phenomena in general, not for the hypercubes only.
The question then arises whether the possible crossover of
) , dimensionality we have observed for hypercubes also applies
Van der Marck[13] has shown that, if there is to be an (g gther lattices with a different topology. So far, accurate
exact universal formula for percolation thresholds, it must b, merical estimates of percolation thresholds beydrd®
based on more information thahandq only. In particular,  could be achieved on the hypercubes only. The lack of data
the body-centered-cubic lattice and the stacked triangular laprevents us for the moment from addressing this question.
tice both realized=3 andq=8, but they have differerp.’s.  Nevertheless, we believe that progress in methods to com-
This simple consideration is sufficient to show that Ed$.  pute percolation thresholds will make possible the simulation
and (3) cannot be exact. Nevertheless, the deviation withof percolation of other systems more complex with a larger
respect to the exact or the almost exédtduced from the coordinate numbeq in the near future.
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