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We report on a possible crossover of a nonuniversal quantity at the upper critical dimensionality in the field
of percolation. Plotting recent estimates for site percolation thresholds of hypercubes in dimension 6ød
ø13 against corresponding predictions from the Galam-MaugersGMd formula pc=p0fsd−1dsq−1dg−adb for
percolation thresholds, a significant departure ofpc is observed fordù6. This result is reminiscent of the
crossover undergone by universal quantities in critical phenomena. For bond percolation, evidence of such a
crossover of dimensionality would require an improvement of the GM formula to reach a relative error of
typically 0.2%, while it is currently at 0.9% for hypercubes.
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I. INTRODUCTION

The discovery of renormalization group techniques by
Wilson in the early 1970s has allowed the powerful elucida-
tion of the mystery of critical phenomenaf1g. It is based on
the existence of relevant variables, irrelevant variables, and
universality classes. Accordingly all parameters are classified
as universal quantities and nonuniversal quantities. For con-
tinuous phase transitions the critical exponents are universal
while critical temperatures are not.

In this framework dimension plays a key role in catego-
rizing the effects of fluctuations. At very low dimensions,
fluctuations are too strong and prevent any long-range order
from occurring. The limit from which it does not happen is
called the lower critical dimensiondl. Only for d.dl can
long-range order sustain fluctuations. On the other extreme,
there exists some dimensiondc called the upper critical di-
mensiondc, beyond which fluctuations are averaged out and
do not influence the critical properties. Ford.dc there exists
only one class of universality: the mean-field one. Therefore
it is in the rangedl ,d,dc that fluctuations are instrumental
in determining the critical properties.

In parallel, percolation is a geometric phenomena with no
temperature. However, it was shown to be indeed identical to
usual critical phenomena withdc=6. Therefore its critical
exponents are universal quantities while percolation thresh-
olds pc are not. Accordingly the value ofpc must be calcu-
lated for each system and varies from one geometry to an-
other. However, at odds with this universality principle, a lot
of efforts have been devoted to the finding of formulas for
the percolation threshold for about half a century. Several
formulas have been proposed, which involve only two pa-
rameters: the dimensiond and coordination numberq f2–7g.
The limits of such a choice have been discussed by Wierner
and Naoret al. f8,9g, who also considered that the most
accurate of such formulas are the Galam-MaugersGMd laws
f6g. Indeed the high degree of accuracy of the GM law pre-
dictions hints at the existence of an underlying universality
principle for percolation thresholds.

In this work, we report on a possible crossover of a non-
universal quantity at the upper critical dimensionality in the
field of percolation. Using the GM laws and a series of recent
numerical estimates for hypercube percolation thresholds
s6ødø13d, site percolation thresholds are found to undergo
a drastic change of behavior at the percolation upper critical
dimensiondc=6. This result is reminiscent of the crossover
undergone by universal quantities in critical phenomena. At
contrast, nothing similar is evidenced at any dimension for
the bond percolation.

Considering only the cased.2 of interest in the present
work, the GM laws are split in two. One applies to 3ød
ødc and can be written

pc = p0fsd − 1dsq − 1dg−adb, 3 ø d ø dc. s1d

The site percolationpc
S is approximated by Eq.s1d, with b

=0, p0=1.2868, anda=0.6160. As for the bond percolation
threshold, p0=0.7541 andb=a=0.9346. This law corre-
sponds to the so-called second classsthe first one being re-
lated tod=2 onlyd and will be called for this reason the GM2
law. Equations1d cannot extend up tod→`. Among several
reasons outlined inf6g, one comes from the fact that, in this
limit, the percolation threshold should reduce to that of the
Cayley tree for both sites and bonds. In other words, one
must recover the Bethe asymptotic limit

pc
S= pc

B = sq − 1d−1, d → `. s2d

Equations2d is violated by the GM2 law. This drawback of
the GM2 law was the main motivation for introducing an-
other law associated with a third class, which applies at high
dimension and has the proper Bethe asymptotic limit. This is
the asymptotic GM3 law

pc = 2a−1fsd − 1dsq − 1dg−ad2a−1, d @ dc, s3d

with a=0.088 00 for sites anda=0.3685 for bonds.
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Despite the fact that the GM2 law is not exact, its accu-
racy is sufficient to materialize the dimensional dependence
of the percolation threshold for the bcc, fcc, and hypercubic
lattices up tod=6. Due to the lack of data for the percolation
thresholds in larger dimension, however, it has not been pos-
sible so far to explore the existence of a critical crossover
dimensiondc above which the percolation threshold would
follow a formula different from the GM2 lawsapproximated
by the GM3 lawd. Recent Monte Carlo estimates for site and
bond percolation thresholds with negligible standard devia-
tions in simple hypercube lattices fromd=6 up tod=13 f10g
now make this investigation possible.

It is the purpose of this work to make a comparison of the
data including these Monte Carlo results with the predictions
of Eqs. s1d and s3d. For the site percolation threshold, the
crossover between the two laws is clearly evidenced at di-
mensiondc=6. For bond percolation thresholds, however, no
sizable deviations from the GM2 law as defined by Eq.s1d is
detected up to the highest dimensiond=13 investigated.
Such a crossover for bonds, if it exists, cannot be detected,
since the GM2 and GM3 laws do not depart significantly
from each other in the range 7ødø13.

II. ANALYSIS

The numerical estimatespc
S and pc

B of the percolation
thresholds for sites and bonds, respectively, are reported in
Table I, together with the results of the GM2 and GM3 laws.
For simple cubicsscd lattices atd=5 andd=6, the data of
Refs. f11,12g have been substituted by those of Ref.f10g,
since they are more accurate; we shall return to this point
later on.

A. Site percolation

As b=0 for site percolation, the GM2 law is best illus-
trated in a log-log plot ofpc

S versussd−1dsq−1d, in which

case it is a straight line. This is illustrated in Fig. 1. We have
reported on the same plot the numerical results ofpc

S taken
from f10–12g. For comparison, we have also reported
scrossesd the values ofpc

S predicted by the asymptotic GM3
law. Note according the GM3 law,sd−1dsq−1d is not the
pertinent variable, hence a randomlike distribution of the
crosses which cannot be connected to generate a curve. In-
deed, since thepc

S’s depend on bothd andq, only the crosses
corresponding to lattices with the same topology, defined by
the relation linkingd andq, can be connected.

In practice, it means that the crosses corresponding to all
the hypercubessscd from d=3 up to d=13 do belong to a
single curve, since the same relationd=2q holds true for all
these lattices. The crosses corresponding to fcc lattices
should also belong to another curve, but the fcc percolation
threshold for the site is known ford=3, 4, and 5 only, and
three data points are not sufficient to materialize a curve. All
the pc

S’s up to thed=6 line up on the GM2 lawswithin the
uncertainty limit above mentionedd as stated in Ref.f6g.

The new data for the sc lattices at higher dimensions,
however, give evidence of a deviation of thepc

S’s from the
linear GM law which increases withd, illustrated in Fig. 1.
An equivalent formulation is to note a negative curvature of
the “numerical” pc

Ssdd curve for sc hypercube lattices atd
.6 to match the GM3 law. To quantify this effect, we have
plotted in Fig. 2 the relative differenceDpc

S/pc
S=fpc

Ssnumd
−pc

SsGM2dg /pc
Ssnumd as a function ofd for the hypercubes

ssince data are available only for these lattices at high dimen-
sionsd. pc

Ssnumd is the numerical percolation thresholdf10g
andpc

SsGM2d the prediction of the GM2 law.
We have reported inf6g that uDpc

Su can reach 0.008 for
some lattices indø6. This measures the accuracy of the
GM2 law when applied toanyBravais lattice sc, bc, or fcc in
3ødø6. However, regarding the simple cubic and hyper-

TABLE I. Numerical estimates for the percolation thresholdspc
Ssnumd, together with the results of the GM2 and GM3 laws. For sc

lattices atd=5 andd=6, the data of Refs.f11,12g have been substituted by those of Ref.f10g, since they are more accurate.

Lattice pc
SsGM2d pc

SsGM3d pc
Ssnumd pc

BsGM2d pc
BsGM3d pc

Bsnumd

Kagomé 0.65400 0.59264 0.65270 0.51620 0.38885 0.52440

Diamond 0.42675 0.43824 0.43000 0.39454 0.24984 0.38800

sc sd=3d 0.31154 0.27957 0.31160 0.24476 0.20697 0.24880

bcc sd=3d 0.25322 0.20792 0.24600 0.17872 0.18284 0.18030

fcc sd=3d 0.19168 0.13969 0.19800 0.11714 0.15479 0.11900

sc sd=4d 0.19725 0.18109 0.19700 0.16009 0.14599 0.16010

fcc sd=4d 0.094794 0.063570 0.098000

sc sd=5d 0.14152 0.13352 0.14100 0.11917 0.11287 0.11820

fcc sd=5d 0.057352 0.036740 0.054000

sc sd=6d 0.10901 0.10562 0.10902 0.095092 0.092028 0.094202

sc sd=7d 0.087898 0.087319 0.088951 0.079233 0.077697 0.078675

sc sd=8d 0.073191 0.074401 0.075210 0.067991 0.067232 0.067708

sc sd=9d 0.062410 0.064802 0.065210 0.059602 0.059255 0.059496

sc sd=10d 0.054198 0.057390 0.057593 0.053097 0.052971 0.053093

sc sd=11d 0.047756 0.051497 0.051590 0.047904 0.047893 0.047795

sc sd=12d 0.042578 0.046699 0.046731 0.043659 0.043704 0.043724

sc sd=13d 0.038336 0.042718 0.042715 0.040124 0.040190 0.040188
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cubes only, the accuracy is much better. In particular, in our
prior work ssee Table I in Ref.f6gd, uDpc

Su for sc lattices was
within 5310−4 at all dimensionsd,7, except atd=6 where
an outstanding deviationuDpc

Su=0.002 was pointed out be-
tween the numerical estimate 0.107 available at that time and
0.109 predicted by the GM2 law. The new numerical calcu-
lationsf10g have corrected the estimate ofpc

S at d=6, raising
pc

S from 0.107 to 0.109 017, now in agreement with the pre-
diction of the GM2 law. With the new estimates of Ref.f10g,
which are.30 times more precise than the previous ones,
we find uDpc

Su /pc
Sø0.4% in the whole range 3ødø6 f6g.

That is why we consider as significant a departure from the
GM2 law with uDpc

Su /pc
Sù0.4% in Fig. 2.

This plot then provides evidence for a crossover atdc=6:
at dø6, the GM2 law applies; atd.6, this is no longer the
case. The systematic quasilinear increase ofDpc

S/pc
S as a

function ofd which extrapolates to zero atd=6 corroborates
this value for the crossover dimension. Note thatdc is also
known to be the upper marginal dimension where critical
exponents for the percolation transition reach mean-field val-
ues. However, in phase transition theory, only universal
quantities are supposed to undergo a crossover atdc. This

FIG. 1. Site percolation threshold as a func-
tion of the variablesd−1dsq−1d pertinent to the
GM2 law, in decimal logarithms. The numerical
estimates sPd are from Refs. f10–12g. The
crosses are predictions of the GM3 asymptotic
law; the solid line materializes the GM2 law.

FIG. 2. Relative difference fpc
Ssnumd

−pc
SsGM2dg /pc

Ssnumd between the numerical data
pc

Ssnumd and the the GM2 lawpc
SsGM2d ssolid

squaresd as a function of the dimensiond of the
hypercubes. Lines are guides for the eyes.
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site percolation transition gives an outstanding example
where a nonuniversal quantity likepc

S also undergoes a cross-
over atdc.

Instead of choosing the GM2 law as the reference, we can
also choose the GM3 law and investigate how the the perco-
lation thresholds approach this asymptotic law. The GM3
law is best illustrated in the log-log plot of 2dpc

S versusx
=2d2/ fsd−1dsq−1dg in Fig. 3 since it reduces to a straight
line. For comparison, the data have been also reported, and
the crosses now correspond to the values ofpc

S as predicted
by the GM2 law. Asx is not the pertinent variable according
to the GM2 law, once again, only the crosses corresponding

to all the hypercubessscd from d=3 up tod=13 do belong to
a single curve. As we can see in Fig. 2, this curve has a
negative curvature and crosses the straight line correspond-
ing to the GM3 law.pc

Ssnumd as a function ofd then shifts
from the GM2 law atdc=6, to approach the GM3slawd as-
sumed to be its asymptote in the GM model.

To illustrate this behavior, we have reported, in Fig. 4,
Dpc

S/pc
S=fpc

Ssnumd−pc
SsGM3dg /pc

S as a function ofd for hy-
percubes in high dimensions. From this figure, it can be seen
that this asymptotic limit is indeed reached atd=13. It is
then important to note that the crossover atdc=6 does not
mean an abrupt shift from the GM2 law to the GM3 law.

FIG. 3. Site percolation threshold as a func-
tion of the variable 2d2/ fsd−1dsq−1dg pertinent
to the GM3 law, in decimal logarithms. The nu-
merical estimatessPd are from Refs.f10–12g.
The crosses are predictions of the GM2
asymptotic law; the solid line materializes the
GM3 law.

FIG. 4. Relative difference fpc
Ssnumd

−pc
SsGM3dg /pc

Ssnumd between the numerical data
pc

Ssnumd and the the GM3 lawpc
SsGM3d as a

function of the dimensiond of the hypercubes.
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Instead, it is a crossover to another law which is missing
here. More important, it indicates this lawpc

Ssnumd as a func-
tion of d is not embedded in the GM formula and accepts the
GM3 law only as an asymptote in the large-d limit, eventu-
ally reachedswithin the error barsd at dù13. Actually, the
systematic and increasing deviation ofpc

S from the GM3 law
asd decreases fromd=13 can be viewed as a pretransitional
effect upon approaching the upper critical dimension from
below, beyond the scope of the GM3 law.

B. Bond percolation

Let us now investigate the situation for bonds. The GM2
law in this case is illustrated in a log-log plot ofpc

B as a
function of sd−1dsq−1d /d sFig. 5d. No deviation from the
GM2 law can be evidenced for any lattice up to the highest
dimensiond=13 investigated. To be more specific, we have
reported in Fig. 6 the differencesDpc

B/pc
B with Dpc

B

=pc
BsGM2d−pc

Bsnumd and Dpc
B=pc

Bsnumd−pc
BsGM3d. Note

the sign inversion in the definition ofDpc
B to have this quan-

FIG. 5. Bond percolation threshold as a func-
tion of the variablesd−1dsq−1d /d pertinent to
the GM2 law, in decimal logarithms. The numeri-
cal estimatessPd are from Refs.f10–12g. The
solid line materializes the GM2 law.

FIG. 6. Relative differenceDpc
B/pc

Bsnumd
with Dpc

B=pc
BsGM2d−pc

Bsnumd scrossesd and
Dpc

B=pc
Bsnumd−pc

BsGM3d ssolid squaresd as a
function of the dimensiond of the hypercubes.
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tity positive, which means that the numerical estimates are in
between the estimates of the GM2 and GM3 laws. Clearly,
the exactsnumericald results match the GM2 law atdø6, as
expected. The relative deviation of the GM2 law with respect
to the numerical result atdø6 is in the rangeDpc

B/pc
B

ø0.9%, so that we can take as significant a departure from
the GM2 lawDpc

B/pc
Bù0.9%.

However, the relative deviation between numerical esti-
mates and the GM2 law is smaller in all dimensions 7ød
ø13. Actually, the relative deviation of the numerical esti-
mates does not exceed 0.4% in the whole range 9ødø13,
not only with respect to the GM2 law, but also with respect
to the GM3 law, so that no significant difference between the
two laws can be detected. Therefore, in contrast with the
situation met in the site percolation problem, the GM3 law is
not accurate enough to detect a crossover atd=6.

To explain why it is not possible to distinguish between
the GM2 and GM3 laws in the range 7ødø13, we note that
the leading term in aq−1 expansion of the GM2 law at large
q is in sq−1db−2a. For bonds,b−2a=−0.94, very close to the
exponent −1 of the leading term in the GM3 law. For sites,
however,b−2a=−1.23, which is markedly different from
−1, so that a clear distinction between the GM2 and GM3
laws can be made even at the scale of a short dimension
interval for sites, while this is impossible for bonds.

To be more specific, we note that the deviation of both the
GM2 and GM3 laws with respect to the numerical results—
i.e., upc

BsGM2d−pc
Bsnumdu and upc

BsGM3d−pc
Bsnumdu—is only

on the fourth digit in dimensiond.7, which amounts to a
relative error within 0.4%, while, as we have stated above, a
deviation with respect to the GM laws can be regarded as
significant only if it exceeds 0.9% for bonds. Therefore, evi-
dence of a crossover of dimensionality atdc=6 for bonds
requires an improvement of the GM law and its substitution
by a new formula which would improve the accuracy typi-
cally a factor 3.

III. DISCUSSION

Van der Marckf13g has shown that, if there is to be an
exact universal formula for percolation thresholds, it must be
based on more information thand andq only. In particular,
the body-centered-cubic lattice and the stacked triangular lat-
tice both realized=3 andq=8, but they have differentpc’s.
This simple consideration is sufficient to show that Eqs.s1d
and s3d cannot be exact. Nevertheless, the deviation with
respect to the exact or the almost exactsdeduced from the

best numerical estimatesd thresholds of sc, bcc, and fcc lat-
tices is so small that the GM laws have the operational power
to address the problem of the crossover dimensionality.

On this basis, the present analysis of the percolation
thresholds for scshypercubesd hints at the possible existence
of a crossover atdc=6 for the site percolation threshold,
although it is a nonuniversal parameter. At higher dimen-
sions,pc

S departs from the GM2 law to approach the GM3
asymptotic law which is reached atd=13. For bonds no
similar behavior atdc=6 is detected.

Because of the relationd=2q for hypercubes, study of
hypercubes alone does not allow us to distinguish between
the variablesd andq to know which one is pertinent for the
possible crossover. However, some indication can be ex-
tracted from the data in Fig. 1. Let us consider in particular
the fcc lattice, which has a coordinanceq much larger than
the hypercube at the same dimension. For instance,q=24
and 40 for fcc lattices in dimensionsd=4 andd=5, respec-
tively. Those are the coordination numbers of hypercubes in
dimensions 12 and 20, respectively. The fcc percolation
thresholds atd=4,5have been reported in Fig. 1, along with
the values predicted by the GM2 and GM3 laws. This figure
shows unambiguously that these two fcc lattices do satisfy
the GM2 law and not the GM3 law, despite the fact that their
coordinance numbers are those of the hypercubes in dimen-
sionsd=12 andd=14.

It corroborates that the pertinent variable responsible for
the possible crossover behavior in the percolation thresholds
is indeed the dimensiond, while the coordinationq does not
play any significant role. It also justifies the term crossover
of dimensionality used in this work. For universal variables,
such as the critical exponents, the renormalization group
technique provides us with an elaborate theory to understand
the crossover of dimensionality at the associated identifica-
tion of universality classes. However, such a behavior is not
expected for nonuniversal quantities like percolation thresh-
olds. The explanation for this unexpected result is thus a new
challenge in the field of phase transition theory.

We note thatdc is the upper critical limit for percolation
transition phenomena in general, not for the hypercubes only.
The question then arises whether the possible crossover of
dimensionality we have observed for hypercubes also applies
to other lattices with a different topology. So far, accurate
numerical estimates of percolation thresholds beyondd=6
could be achieved on the hypercubes only. The lack of data
prevents us for the moment from addressing this question.
Nevertheless, we believe that progress in methods to com-
pute percolation thresholds will make possible the simulation
of percolation of other systems more complex with a larger
coordinate numberq in the near future.

S. GALAM AND A. MAUGER PHYSICAL REVIEW E 71, 036136s2005d

036136-6



f1g K. G. Wilson and J. Kogut, Phys. Rep.12, 75 s1974d.
f2g V. A. Vyssotsky, S. B. Gordon, H. L. Frisch, and J. M. Ham-

mersley, Phys. Rev.123, 1566s1961d.
f3g M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis, J.

Phys. A 16, L67 s1983d.
f4g S. Galam and A. Mauger, J. Appl. Phys.75, 5526s1994d.
f5g S. Galam and A. Mauger, Physica A205, 502 s1994d.
f6g S. Galam and A. Mauger, Phys. Rev. E53, 2177s1996d.

f7g S. Galam and A. Mauger, Phys. Rev. E56, 322 s1997d.
f8g J. C. Wierman, Phys. Rev. E66, 027105s2002d.
f9g J. C. Wierman and D. P. Naorsunpublishedd.

f10g P. Grassberger, Phys. Rev. E67, 036101s2003d.
f11g D. Stauffer and A. Aharony,Introduction to Percolation

Theory, 2nd ed.sTaylor & Francis, London, 1994d.
f12g D. S. Gaunt and H. Ruskin, J. Math. Phys.11, 1369s1978d.
f13g S. C. Van der Marck, Phys. Rev. E55, 1514s1997d.

POSSIBLE CROSSOVER OF A NONUNIVERSAL… PHYSICAL REVIEW E 71, 036136s2005d

036136-7


